您现在的位置: 长江大学园艺园林学院 >> 师资队伍 >> 园艺系 >> 正文
吴强盛教授
作者:佚名    文章来源:本站原创    点击数:    更新时间:2015-9-4
 

 
一、基本概况

    吴强盛,男,1978年生,教授,江西抚州人,长江大学园艺园林学院任教。湖北省新世纪高层次人才工程第二层次人选(2012年);2012年第四届“青年科学之星”(中国科学院、中国工程院、国家自然科学基金委、中国科协、全国青年联合会指导支持,中国科学报社主办);湖北省自然科学基金“杰出青年人才基金”获得者(2012年);湖北省优秀共产党员(2013年);荆州市十大杰出青年(2014年)。

二、教育背景与研究经历

    1997-2001,江西农业大学农学院园艺专业学习,获学士学位

     2001-2006,华中农业大学园艺林学学院果树专业学习,获博士学位

    2006-2010,长江大学园艺园林学院任教,讲师/副教授,硕士生导师

    2011-至今,长江大学园艺园林学院任教,湖北省破格晋升教授,硕士生导师

三、研究领域、方向和成果

    主要研究植物菌根生物技术。重点方向:

[1]菌丝桥在植物间的信号传导作用和功能;

[2]菌根增强植物(三叶草、枳)抗逆性的机理;

[3]菌根释放球囊霉素的机理及其相关功能;

[4]菌根改善植物根系构型的生理机制。

四、主讲课程

《园艺植物营养诊断》、《特种果树》《科技写作》、《文献检索》等

五、主持项目

项目编号
 项目来源
 项目名称
 执行年限
 
31372017
 国家自然科学基金
 柑橘菌根根外菌丝释放球囊霉素相关土壤蛋白的特性及其相关功能研究
 2014-2017
 
2012FFA001
 湖北省自然科学基金杰出青年人才基金
 柑橘根际球囊霉素的相关功能研究
 2013-2014
 
2012260
 湖北省教育厅高等学校省级教学研究项目
 园艺专业“三明治”教育培养模式的研究与实践
 2012-2014
 
211107
 教育部科学技术研究重点项目
 柑橘菌根释放球囊霉素的特点及其在碳代谢中的作用
 2011-2012
 
Q20111301
 湖北省教育厅科学技术研究项目
 柑橘菌根根外菌丝释放球囊霉素的特点及其作用研究
 2011-2012
 
09-04
 农业部作物营养与施肥重点实验室开放基金
 过氧化氢在丛枝菌根真菌提高柑橘抗旱性中的信号作用
 2010-2011
 
2009k20
 农业部生态农业重点开放实验室开放基金
 丛枝菌根真菌在柑橘耐盐性中的作用及机理
 2010-2011
 
2009206
 湖北省教育厅高等学校省级教学研究项目
 园艺专业优秀创新人才培养途径和方法的探索与时间
 2009-2011
 
30800747
 国家自然科学基金
 柑橘丛枝菌根共生体与多胺的交互作用研究
 2009-2011
 


六、主要学术兼职

[1]《Universal Journal of Environmental Research and Technology》编委

[2]《Current Horticulture》编委

[3]《Biotechnology Frontier》编委

[4]长江大学学术委员会委员

[5]湖北省柑桔学会理事

[6]定期或不定期受邀为以下国际SCI期刊审阅稿件: Microbial Ecology、Plant Physiology and Biochemistry、Environmental and Experimental Botany、Agriculture, Ecosystems and Environment、Agroforestry Systems、Applied Soil Ecology、Scientia Horticulturae、European Journal of Soil Biology、Journal of Agricultural Science and Technology、Archives of Agronomy and Soil Science、Tur J Agric For、Sensors等

[7]不定期受邀为以下国内期刊审阅稿件: 《应用生态学报》、《生态学杂志》、《植物病理学报》、《广西植物》、《西南林业大学学报》、《长江大学学报》(自然科学版﹒农学卷)。

七、专著

[1]吴强盛. 园艺植物丛枝菌根研究与应用. 科学出版社,2010,25.7万字

[2]Wu QS, Zou YN, Abd-Allah EF. Mycorrhizal association and ROS in plants. In: Ahmad P (Ed) : Oxidative damage to plants. Elsevier Inc., 2014, pp. 453-475

[3]Wu QS, Srivastava AK. Rhizosphere microbial communities: isolation, characterization and value addition for substrate development. In: Srivastava AK (Ed). Advances in Citrus Nutrition. Springer, 2012, pp. 169-194

[4]Wu QS, Levy Y, Zou YN. Arbuscular mycorrhizae and water relations in citrus. In: Tennant P, Benkeblia N (Eds). Citrus II. Tree and Forestry Science and Biotechnology, 2009, 3 (Special Issue 1):105-112

[5]Wu QS, Zou YN. Arbuscular mycorrhizal symbiosis alleviates oxidative stress of plants. In: Ahmad P, Umar S, Sarwat M (Eds). Oxidative Stress: Role of Antioxidants in Plants. India: Studium Press Pvt. Ltd., 2011, pp 269-282

[6]Wu QS, Zou YN. Citrus mycorrhizal responses to abiotic stresses and polyamines. In: Hemantaranjan A (Ed). Advances in Plant Physiology. Vol 12. India: Scientific Publishers, 2011, pp 31-56

[7]Wu QS, Zou YN. Arbuscular mycorrhizas improve water relations of plants exposed to drought. In: Hemantaranjan A (Ed). Advances in Plant Physiology. Vol 11. India: Scientific Publishers, 2009, pp 23-52

八、SCI收录论文(*通讯作者)

2014年

[1]Wu QS, Cao MQ, Zou YN, He X. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports, 2014, 4:5823   IF=5.078

[2]Zou YN, Huang YM, Wu QS*, He XH. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza, doi: 10.1007/s00572-014-0589-z   IF=2.985

[3]Wu QS, Li Y, Zou YN, He XH. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza, 2014, doi: doi: 10.1007/s00572-014-0594-3   IF=2.985

[4]Wang S, Srivastava AK, Wu QS*, Fokom R. The effect of mycorrhizal inoculation on the rhizosphere properties of trifoliate orange (Poncirus trifoliata L. Raf.). Scientia Horticulturae, 2014, 170:137-142  IF=1.504

[5]Wu QS, Huang YM, Li Yan Nasrullah, He XH. Contribution of arbuscular mycorrhizas to glomalin-related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere. International Journal of Agriculture and Biology, 2014, 16:207-212             IF=0.902

[6]Wu QS, Wang S, Cao MQ, Zou YN, Yao YX. Tempo-spatial distribution and related functionings of root glomalin and glomalin-related soil protein in a citrus rhizosphere. Journal of Animal and Plant Sciences, 2014, 24:245-251

[7]Zou YN, Srivastava AK, Wu QS*, Huang YM. Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit. Archives of Agronomy and Soil Science, 2014, 60:1103-1114

2013年

[8]Zou YN, Wu QS*, Huang YM, Ni QD, He XH. Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLoS ONE 8(11): e80568  IF=3.534

[9]Wu QS, Zou YN, Huang YM. The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecology, 2013, 6:37-43                                 IF=2.992

[10]Wu QS, Zou YN, Huang YM, Li Y, He XH. Arbuscular mycorrhizal fungi induce sucrose cleavage for carbon supply of arbuscular mycorrhizas in citrus genotypes. Scientia Horticulturae, 2013, 160:320-325 IF=1.504

[11]Wu QS, Zou YN, He XH. Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Scientia Horticulturae, 2013, 160:366-374   IF=1.504

[12]Wu QS, He XH, Cao MQ, Zou YN, Wang S, Li Y. Relationships between glomalin-related soil protein in water-stable aggregate fractions and aggregate stability in citrus rhizosphere. International Journal of Agriculture and Biology, 2013, 15:603-606 IF=0.902

[13]Li Y, Zou YN*, Wu QS*. Effects of Diversispora spurca inoculation on growth, root system architecture and chlorophyll contents of four citrus genotypes. International Journal of Agriculture and Biology, 2013, 15:342-346  IF=0.902

[14]Zou YN, Liang YC, Wu QS*. Mycorrhizal and non-mycorrhizal responses to salt stress in trifoliate orange: plant growth, root architecture and soluble sugar accumulation. International Journal of Agriculture and Biology, 2013, 15:565-569  IF=0.902

[15]Ni QD, Zou YN, Wu QS, Huang YM. Increased tolerance of citrus (Citrus tangerina) seedlings to soil water deficit after mycorrhizal inoculation : changes in antioxidant enzyme defense system. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2013, 41:524-529

[16]Cao MQ, Wu QS*, Zou YN. An improved ink-acetic acid technique for staining arbuscular mycorrhizas of citrus. International Journal of Agriculture and Biology, 2013, 15:386-388        IF=0.902

[17]Wu QS, Srivastava AK, Zou YN. AMF-induced tolerance to drought stress in citrus : A review. Scientia Horticulturae, 2013, 164: 77-87                 IF=1.504

[18]Wu QS, Zou YN, Mycorrhizal symbiosis alters root H+ effluxes and root system architecture of trifoliate orange seedlings under salt stress. Journal of Animal and Plant Sciences, 2013, 23:143-148

2012年

[19]Wu QS, He XH, Zou YN, He KP, Sun YH, Cao MQ. Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu. Soil Biology and Biochemistry, 2012, 45:181-183  IF=4.41

[20]Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regulation, 2012, 68:27-35  IF=1.625

[21]Wu QS, Zou YN, Liu CY, Lu T. Interacted effect of arbuscular mycorrhizal fungi and polyamines on root system architecture of citrus seedlings. Journal of Integrative Agriculture, 2012, 11:1675-1681

[22]Wu QS, Zou YN. Evaluating effectiveness of four inoculation methods with arbuscular mycorrhizal  fungi on trifoliate orange seedlings. International Journal of Agriculture and Biology, 2012, 14:266-270

[23]Wu QS, Zou YN, Liu M, Cheng K. Effects of exogenous putrescine on mycorrhiza, root system architecture, and physiological traits of Glomus mosseae-colonized trifoliate orange Sseedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40:80-85

2011年

[24]Wu QS, Zou YN, He XH, Luo P. Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Plant Growth Regulation, 2011, 65:273-278   IF=1.625

[25]Wu QS. Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress. Plant Soil and Environment, 2011, 57(10):459-464  IF=1.113

[26]Wu QS, Zou YN, He XH. Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Scientia Horticulturae, 2011, 129:294-298 IF=1.504

[27]Wu QS, Zou YN, Peng YH, Liu CY. Root morphological modification of mycorrhizal citrus (Citrus tangerine) seedlings after application with exogenous polyamines. Journal of Animal & Plant Sciences, 2011, 21:20-25

[28]Wu QS, Zou YN, Wang GY. Arbuscular mycorrhizal fungi and acclimatization of micropropagated citrus. Communications in Soil Science and Plant Analysis, 2011, 42:1825-1832

[29]Wu QS, Li GH, Zou YN. Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. Batsch) seedlings. Journal of Animal & Plant Sciences, 2011, 21(4): 746-750

[30]Wu QS, Li GH, Zou YN. Improvement of root system architecture in peach (Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root. Not Bot Horti Agrobo, 2011, 39:232-236

[31]Zou YN, Wu QS*. Sodium chloride stress induced changes in leaf osmotic adjustment of trifoliate orange (Poncirus trifoliata) seedlings inoculated with mycorrhizal fungi. Not Bot Horti Agrobo, 2011, 39:64-69

2010年

[32]Wu QS, Zou YN. Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Scientia Horticulturae, 2010, 125:289-293 IF=1.504

[33]Wu QS, Zou YN, Zhan TT, Liu CY. Polyamines participate in mycorrhizal and root development of citrus (Citrus tangerine) seedling. Not Bot Hort Agrobot Cluj, 2010, 38:25-31

[34]Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ Alleviatin of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant, Soil and Environment, 2010, 56:470-475  IF=1.113

[35]Wu QS, Zou YN, He XH. Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. International Journal of Agriculture & Biology, 2010, 12:576-580

[36]Wu QS, Zou YN, He XH. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologia Plantarum, 2010, 32:297-304

[37]Wu QS, Peng YH, Zou YN, Liu CY. Exogenous polyamines affect mycorrhizal development of Glomus mosseae-colonized citrus (Citrus tangerine) seedlings. ScienceAsia, 2010, 36:254-258

2009年

[38]Wu QS, Zou YN. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant, Soil and Environment, 2009, 55:436-442  IF=1.113

[39]Wu QS, Zou YN. Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. Not Bot Hort Agrobot Cluj, 2009, 37(1):133-138

[40]Wu QS, Zou YN. The effect of dual application of arbuscular mycorrhizal fungi and polyamines upon growth and nutrient uptake on trifoliate orange (Poncirus trifoliata) seedlings. Not Bot Hort Agrobot Cluj, 2009, 37(2):95-98

[41]Wu QS, Zou YN. Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philipp Agric Scientist, 2009, 92:33-38

[42]Wu QS, Zou YN. Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress. ScienceAsia, 2009, 35:388-391

2008年

[43]Wu QS, Xia RX, Zou YN. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 2008, 44:122-128 IF=2.146

2007年

[44]Wu QS, Zou YN, Xia RX, Wang MY. Five Glomus species affect water relations of Citrus tangerine during drought stress. Botanical Studies, 2007, 48:147-154

[45]Wu QS, Xia RX, Zou YN, Wang GY. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiologia Plantarum, 2007, 29:543-549    IF=1.524

2006年

[46]Wu QS, Xia RX. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 2006, 163:417-425 IF=2.77

[47]Wu QS, Xia RX, Zou YN. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. Journal of Plant Physiology, 2006, 163:1101-1110 IF=2.77

[48]Wu QS, Zou YN, Xia RX. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism & antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol, 2006, 42:166-172  IF=2.146

  • 上一篇文章:
  •    
  • 下一篇文章:
  • 文章录入:xb    责任编辑:zjf 
    Copyright© 2015 长江大学园艺园林学院 Designed by zjf
    湖北省荆州市荆秘路88号 邮编:434025 电话:8066260 传真:8066262